LB

PREPRINT UCRL- 81922

Lawrence Livermore Laboratory

SCIENTIFIC APPLICATION CODING IN THE CONTEXT OF DATAFLOW

John P. Woodruff

CIRCUL4T
|
November 15, 1978 SUBJECT ON COi,

0]
IN REC

This paper was prepared for presentation at the National Computer Conference 1979,
New York, New York, June 4-7, 1979.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made
before publication, this preprint is made available with the understanding that it wiil not be cited or reproduced
without the permission of the author.




DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.



-t

SCIENTIFIC APPLICATION CODING IN THE CONTEXT OF DATAFLOW

John P. Woodruff
Lawrence Livermore Laboratory
Livermore, California

ABSTRACT

One potential use for dataflow computers is in scientific application
computing: the numerical solution of partial differentia! equations. This
article describes the type of computation that is carried out in support of
applied physics research, with particular emphasis on the data dependencies that
exist in both explicit and implicit finite difference equations. We describe
the features of these application codes that determine the scale of the
computation to be performed, and observe that present codes running on available
computers are smaller scale solutions than ideal physical modeling would
require. One possible avenue to significantly faster computation is the
dataflow concept. Before programs can be written for a hypothetical dataflow
computer, several programming techniques need to be developed. These techniques
are embodied in the programming languages and the data types that are used to
express a program. Imperative and applicative language styles are described and
compared to the semantic basis of a dataflow computer. Data types that are used
in conventional computer codes are examined, and certain shortcomings relative
to dataflow computing are noted. We observe the need for a data type that can
make the data dependencies between elements of arraylike entities explicit.

INTRODUCTION

Scientific computation in support of applied physics research is directed
at the numerical solution of femilies of partial differential equations.
Several disciplines in physics pursue the properties of sets of these equations.
For example, continuum mechanics, heat conduction, and chemical kinetics can be
expressed as sets of differential equations. In general, these families of
equations express the space variation and Lime evolution of some measurable
phenomena. The method of solution is to posit initial conditions and boundary
conditions, and to iterate numerical approximations to the differential
equations to compute a condition for a later time.

There is a well-established need to build codes that improve our physical
modeling capability in three regards: dimensionality, spatial detail, and
physical verisimilitude. All three demands drive us toward faster and larger
computing machines. Experience shows that problems that are run tend to
consume, at most, a few hours of computer time. When more powerful computers
become available, more complicated codes are run, with the result that few



hour—size problems are more complicated, and represent more realistic physical
models.

The dataflow computation paradigm has been proposed as a method for greatly
increasing the number of numerical operations that can be performed in parallel
during a code run. Codes that will exploit this paradigm need to be written in
a way that exposes the inherent parallelism in the algorithm being solved.

Novel language constructs and data types may be needed to facilitate the
exposure of parallelism. This paper is an early progress report of work that is
just beginning: some speculations of programming methods are presented. but we
stress that only after a number of attempted applications have been tested will
the field of dataflow programming be well defined.

DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

An example of a partial differential equation of interest to a physicist is
the Newtonian equation of motion, F = ma, expressed for a continuous isotropic
medium:

pdu-VS=0 (1)
dt

Here p is the density of the medium, u is the velocity field, and S is the
stress field. The operator V is the space difference operator, and d/dt is a
time difference operator. This equation is not solvable by itself because it
contains three independent variables. The complete formulation of shock
hydrodynamics requires additional equations that are to be solved simultaneously
for all the variables that appear. The full specification for shock
hydrodynamics requires solution of six equations in six unknowns . !

To compute results, we discretize the space coordinates into small zones
and then solve the system of equations repetitively for successive instants in
time. The full set of finite difference equations is solved for a particular
value of time t". Then a computation is made over all zones to find the maximum
stable value of At that will allow the next cycle computation to proceed. The
data dependence of the stability rule is that all zones must be solved for all
dynamic quantities before the single value of At can be computed.

The equation of motion is transformed into finite difference form in one
space dimensjon, yielding:

ul*! = ul + 2at (SP - SP_,) /[pa(x{:,\l - xf) + pf_ (x} - xﬂ_l)] (2)

The subscript k indexes the discrete point in space; the superscript n
identifies the cycle number of the iteration. We represent the u, as an array
of real numbers. Al each cycle, we replace the array u®™ by the newly computed
array u™*!, This equation is an example of an explicit finite difference



oquation; it can be solved for all the k points at cycle n+l using only
information that was known from cycle n.

A more common expression of the same partial differential equation is the
elaboration in two space dimensions. In this formulation there are two
orthogonal components of velocity, ux and uy. Each component is defined at
every zone in the space within the problem boundary. For numerical computation,
each component might be represented as a doubly subscripted array of real
numbers. The two equations would possess the same property as the equation in
one dimension, namely all points can be calculated from previously known values.

Consider another differential equation, that of heat conduction:?

v - xVeo (3)

QIQ
D ™
=

1
P

This equation expresses the time variation of a temperature § in terms of the
local gradient of temperature V8, the heat conductivity x of the medium, and
9e /06, the specilic heat at constant volume of the medium.

When we write this equation in finite difference form, we use an implicit
differencing technique and obtain, for one space dimension:

a:*‘ =00 + _ At [‘k(92:} - 92+l) - xk-l(ﬂﬂ*' - 0::{)] (4)

M, :_;)k

Zonal mass M, is computed from the density and geometry, and 8¢/86 is obtained
from a formulation of material properties. The temperature data are represented

by a singly subscripted array of real numbers. Notice the dependence of 0:*’ on

n+l
aktl'

This tridiagonal set of linear equations is solved by back substitution: a
set of recurrence relations for the coefficients is generated by traversing the
grid from left to right, and then the temperatures are computed by traversing
the equations from right to left. If the partial differential equation,

Eq. (3), is to be solved in a multidimensional geometry, the equations cre
formulated in alternating direction implicit form,3 then solved by a similar
technique to the one—-dimensional case.

SCALE OF COMPUTATION

The partial differential equations written ebove represent arbitrarily
complicated continuous spatial variation of the physical phenomena that are
described. In converting to finite difference form for numerical solution,
simplifications and approximations are introduced that limit the detail that can
be simulated. The scale of the computational work to be done is determined by
the dimensionality of the equations, by the detail that is represented by the

-3



discretization, and by the degree of physical verisimilitude that the equations
represent.

By writing out separate equations for each orthogonal coordinate, it is
possible to express the finite difference solutions in either one, two, or three
space dimensions. Only a few problems have interesting solutions in one
dimension. These problems are either spherically symmetric or are infinite
plenes. Such a problem is quite small; usually the total number of zones in a
one-dimensional problem is of order 102. A few minutes of computer time
suffices for the solution of most one-dimensional problems.

Most important application code systems are solutions for two degrees of
freedom. Most problems are representations of physical bndies that are figures
of revolution. Problems in two dimensions typically have of order 10* zones and
require one to ten hours for solution.

A few codes are being written that deal with three degrees of freedom.
Present computers are neither large enough nor fast enough to deal with fully
general three-dimensional problems, which would require of order 10° zones.
Since each zone of a code requires the computation and storage of between 6 and
30 different physical parameters, the widespread computation of
three~dimensional problems awaits larger and faster machines.

The scale of physical detail that can be represented in a code is
determined by the number of zones in the code’s data space. The realism of a
particular computer result is greatest if the zones in the problem are of
comparable size, because this allows the numerical differences to resemble the
ideal differentials most closely. Sometimes a physically small feature is
important to the modeling of a considerably larger system. In such a case,
distributing zones over the system so as to retain correct representation of
space derivatives may demand many zones. A code runs for a duration that is
0(n%*!) where n represents the zone count and d is the dimensionality of the
solution.

The final determinant to the scale of computation is the selection of the
physical approximation embodied in the partial differential equations being
solved. In the example of the Newtonian equation of motion shown in Eq. (1),
the stress field was the scalar field S. In shock hydrodynamics the stress S is
given by S = (-P —Q), where P is the hydrostatic pressure end Q is the
artificial viscosity. Pressure is the physical response of real materials to
compression ard heating. The equation-of-state function that produces P in a
hydrocode may be quite complicated; typically about one third of the machine
time used by such a code is spent evaluating the equation of state. The
artificial viscosity Q is a computational strategem employed to allow simulation
of physical systems that may contain discontinuities.

There are physical situations in which the hydrodynamic stress is not an
adequate representation of reality.* One such is the computation of the response
of an elastic solid medium, such as the body of the earth, to transient
accelerations. To calculate elastic response, we add terms to the stress field
that represent the elastic body forces. In two dimensions, this stress field



has three additional terms, each of which is computed by auxiliary equations,
and each of which introduces further variables to the formulation.

In summary, the calculations we perform now are not the most desirable
solution to a set of perfectly represented physical principles. Instead, our
present calculations represent a set of compromises to the size and speed of
available computing machinery. There is not now any apparent limit to the
demand for faster and larger computations.

PROGRAMS FOR DATAFLOW COMPUTERS

The concept of a datallow computer has been described by several
authors.%=% This concept is sharply different from conventional computing ideas,
and one might expect that the programs written for dataflow machines might be
sharply different from programs interded for conventional machines. This
section points out the salient featur:s of the dataflow concept as seen by a
programmer about to write a code for & dataflow machine, and indicates
directions that programming research may take in developing methods for applying
the dataflow paradigm to scientific computation.

A program on a conventional computer is a sequence of imperative
instructions. In writing such a code, a programmer describes a set of
activities; the machine executes these activities in prescribed order. The
concept of control flow underlies the programmer’s activities when constructing
the procedural description of a code. In dataflow, control flow is not a useful
paradigm. An instruction in dataflow does not execute because control comes to
the instruction, but instead an instruction executes when the required input
data have arrived. Thus the programmer of a dataflow machine has little use for
a procedural description of the code’s actions. [t now appears that the
procedural coding paradigm will be replaced by the idea of functionality of
expressions. Programs on dataflow machines evaluate expressions instead of
following sequential instructions. :

A second major feature of conventional machines that is absent in dataflow
machines is the random access memory that stores and retrieves values when keyed
by an address. Data in a conventional computer have a kind of dual existence:
as values and as addresses. The datea types that have been invented for
programming languages are influenced by this duality. An extreme example of the
identification between program abstraction and physical memory in a computer is
the vector: programming a procedure for a vector machine requires the
programmer to force the abstract data (the values to be manipulated) into strict
conformance with the physical layout of the machine. By contrast, the dataflow
machine does not invite the contemplation of the dual value/address properties
of data. The values of data entities exisi, and travel between operations, but
are not referred to by address. The aspect of code data that is important to
dataflow programs is the ordering of actions that are used to create and
transform the data entities. Functions that pass data values between each other
are sequenced by their data dependencies. Functions that do not share any

-5



common data declarations are not in any stated sequence, and therefore are
candidates for concurrent execution.

The removal of these two familiar precepts leaves a void to be filled by
new programming techniques. The development of innovative programming languages
is one research topic that is aiding the dataflow programmer. Another area of
research that is just emerging is the specification of data types that clearly
express dependencies between elements of data.

LANGUAGE [SSUES

The dataflow graphs that represent the low level picture of the computation
in a dataflow machine are apparently not highly useful for expressing
algorithms. A human-engineered language representation is appropriate.

Language processors will compile this high level code to dataflow graphs. Two
language types have been advanced for this purpose.

Conventional languages such as Fortran and Pascal that are used for
numerical computation are imperative languages. They are built to express
procedural descriptions of progrems. These languages are well suited to the
semantics of conventional computers. Sequential control is reflected by
language constructs such as conditional statements and looping structures; the
concept of memory addressing is reflected in the ability of the language to
express arbitrary assignments of values to identifiers. Such a language does
not inherently make obvious the data dependencies between operators, so one can
not always easily detect from the structure of a code which data elements are
input to or output from a particular module. Still, there is a large amount of
code already written in these languages. It would be very worthwhile to be able
to run these existing codes on our hypothetical dataflow computers.

A better match to the semantics of the dataflow computer is to be found in
the semantics of applicative languages. Here the single assignment rule is in
force: only one definition of the value of any identifier is allowed. The
identifier (variable name) is not seen as a place in memory holding a value, but
as a label for a piece of information that is passed from some expression that
created its value to some other operators that will use that value. In writing
a code in an applicative language we write functions to be evaluated. The
functions produce results that depend only on the values that were input to
them. Further, functions may have no effect on any program data except their
own output values, so side effects are not possible. These rules closely
parallel the semantics of the dataflow paradigm. It takes a little practice for
a progremmer to switch from the imperative to the applicative style, but the
emergence of humen—engineered applicative languages with high expressive power
for numerical applications will ease this transition.



DATA TYPES

In the foregoing discussion of application codes, the array data type
figured prominently as the data abstraction that unified the concept of physical
field and allowed the programmer to access the individual components of the
field. Conventional machine semantics of undisciplined sequential fetches and
stores of data is consistent with the array concept of contiguous physical
memory. In dataflow, however, we need to express the date dependencies of
individual results more clearly. The array in detaflow semantics is too large
an assemblage of values to allow all possible parallelism in the algorithm that
creates the vajues to show. An illustration of the possible interpretation of
data dependencies in an application shows the weakness of the array. From
Eq. (1), the new value of the velocity array in a Newtonian hydroecode is
functionally

u="1, (p.S,x,4L) (5)

This statement declares that the array u is to be delivered as a result of
calculations using the arrays x, p, and S. When this function is computed on a
dataflow machine, no subsequent use of any elements of array u can be made until
the array is complete. This is because in general any element of an array may
be data dependent on any of the input argument elements, and therefore it is not
safe to extract results from u until it is certain that all have been defined.

The algorithm (Eq. (2)) that we use to compute u shows the actual
functionality of the elements of u to be defined more tightly than the foregoing
array functionality suggested:

U = 0 (Ay ko Skat, ko Xk=1,k, ke1+DL) (8)

This functionality allows some elements of the array u to be created when only a
specific few elements of the input arrays are in hand. If it were possible for
the u data to be constructed piece by piece, then consumption of some elements
of u could begin before all the elements were built. Such overlap might expose
considerably more run-time parallelism than is available using array semantics.

The stream®:!9 appears to fulfill the need for an asynchronous data type to
replace one-dimensional arrays. The stream could be used to carry part of the
output from the function that creates u to the next function so that the
successor could begin consuming values before all the elements of the structure
were built. A possible shortcoming of the stream type is that the elements of
the stream would be emitted in order, even though there is no inherent reason in
the algorithm for this sequencing of elements. Unnecessary delays in
consumption of stream elements might arise if differences in timing existed for
different element creations.

A more difficult problem arises when we consider two-dimensional data
structures. The functionality of a function that creates elements for a
rectangular array in a two—-dimensional hydrocode might be



ux,.y = fj (Pk-t.k:t-t.t'sk—l.k;l-u.l'xk—l.k.k+1;l-1.l.l+1'At) (7)

It is plain that the production of components of ux depend only locally on the )
elements of the input argument structures. There is no date type currently
defined that allows this locality of datea reference to be expressed, and it
seems likely that much of the parallelism that could be exploited between
disjoint date localities will be unavailable in the absence of such a data type.
Possibly some generalization of a streamlike entity should be invented to allow
these facts about data dependencies to be expressed.

i

SIMULATION

Our study of the epplication of dataflow semantics to the solution of
scientific computations uses an experimental approach. We write code fregments
and run them on software simulators!!:!2 of dataflow machines to discover how
well parallelism is exploited by a particular problem statement. This
experimental approach has already led to the observation that data types
stronger than array are needed; however no simulation using a streamlike type
has yet been performed. We expect tu test other hypotheses and to sharpen our
dataflow programming skill using simulators. We will be reporting from time to
time on the utility of the detafiow paradigm for scientific computing.

ACKNOWLEDGMENTS

The work reported here was performed under the auspices of the U.S.
Department of Energy by the Lawrence Livermore Laboratory under contract
No. W-7405~Eng-48. This work was supported in part by the U.S. Department of
Energy., Office of Basic Energy Sciences.

L2t



A}

REFERENCES

R.D. Richtmyer and K.W. Morton, Difference Methods for I/nitial-Value
Problems (Interscience Publishers, New York, 1967), 2nd ed., Chapter
12.

ibid, Chapter 8.

R.S. Varga, Matrixz /terative Analysis (Prentice~Hall Inc., Englewood
Clifts, New Jersey, 1982), Chapter 7.

M.L. Wilkins, Calculation of Elastic-Plastic Flow, Lawrence Livermore
Laboratory, Livermore, Calif,, UCRL-7322, Rev 1 (1969).

J.B. Dennis, D.P. Misunas, and C.K. Leung, 4 Highly Parallel Processor
Using Data Flow Language, Massachusetts Institute of Technology,
Cambridge, Mass., Computation Structures Group Memo 134, (1877).

Arvind and K.P. Gostelow,”A Computer Capable of Exchanging Processors
for Time,” in /nformation Processing 77, B. Gilchrist, Ed. (IFIP, North
Holland Publishing Company, 1977), pp. 849-853.

A.L. Davis, "Principles for Distributed Control Computer Architecture,”
in Proc. 2nd Rocky Mountain Symposium on Microcomputiers, Pingree Park,
Colorado, August 1978, (Institute of Electrical and Electronics
Engineers, Inc., New York, 1978), pp. 108-123.

S. Patil, R.M, Keller, and G. Lindstrom, 4n Architecture for a Loosely
Coupled Parallel Processor, Department of Computer Science, University
of Utah, Salt Lake City, Utah, UUCS-78-105 (1978).

K.S. Weng, Stream—Oriented Computation in Recursive Data Flow Schemes,
Massachusetis Institute of Technology, Cambridge, Mass., MAC Technical
Memorandum 68, (1975).

Arvind, K.P. Gostelow, and W. Plouffe, The (Preliminary) I/d Report: An
Asynchronous Programming Language and Computing Machine, Department of
Information and Computer Science, University of California, Irvine,
Calit., Technical Report 114, (1978), Chapter 4.

K.P. Gostelow, University of California, Irvine, private communication,
{September, 1978).

A.E. Oldehoeft, S. Allan, S. Thoreson, C. Retnadhas, and R. Zingg,
Translation of High Level Programs to Data Flow and Their Simulaled
Execution on a Feedback Interpreter, Department of Computer Science,
lowa State University, Ames, lowa, Technical Report # 78-2, (1978).



1P/ jw/crs

NOTICE

“This report was prepared as an account of work
sponsored by the United States Government.
Neither the United States nor the United States
Department of Energy, nor any of their em-
ployees, nor any of their contractors, subcon-
tractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness
or usefulness of any information, apparatus,
product or process disclosed, or represents that
its use would not infringe privately-owned rights.”

NOTICE

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the
U.S. Department of Energy to the exclusion of
others that may be suitable.

-10-



